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Introduction

Phospholipids are structural components of the cell plasma 
membrane and are important messengers that regulate plant growth 
and development and cellular response to environmental change or 
stress.1 Phospholipid-generated signal transduction involves a family 
of phospholipases that catalyze the hydrolysis of plasma membrane 
phospholipids to generate secondary messengers. Phospholipase 
C (PLC) hydrolyzes phosphatidylinositol 4,5 bisphosphate 
(PtdIns(4,5)P

2
) to generate inositol 1,4,5 trisphosphate (Ins(1,4,5)

P
3
) and diacylglycerol (DAG). In plants, Ins(1,4,5)P

3
 may be 

converted instead to inositol hexaphosphate (IP
6
), which has been 

shown to stimulate the release of Ca2+ from intracellular stores 
in guard cells.2 Phospholipase D (PLD) hydrolyzes membrane 
phospholipids, generating structural phosphatidic acid (PA) 
and releasing the polar head of the phospholipid.3 Phospholipid 
signaling is involved in plant response to phytohormones such as 

salicylic acid (SA), an important endogenous signaling molecule 
in plant defense.4-7 SA also regulates several plant physiological 
processes and is essential for the expression of some defense genes.8,9

Two spatially separated SA biosynthetic pathways of have been 
proposed in higher plants: the cytoplasmic and chloroplastic routes. 
The cytosolic pathway initiates from phenylalanine, whereas 
the chloroplastic one does it from chorismate, via isochorismate 
(IC).10 SA accumulated in response to pathogens, is produced in 
the chloroplast in different species, such as Arabidopsis, Nicotiana 
benthamiana, and tomato (Solanum lycopersicum).11-13 If this is the 
case in C. chinense has yet to be established however, since other 
members of the Solanaceae family, including tomato12 use the 
chloroplastic pathway, a similar scenario can be inferred.

As for the possible receptors of SA (see ref. 8 for a review), Fu et 
al.14 reported a small family of pathogenesis-related genes (NPR1, 
NPR3, and NPR4) that might function as SA receptors in the 
immune response of Arabidopsis thaliana. However, besides these 
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signal transduction via phospholipids is mediated by phospholipases such as phospholipase c (pLc) and D (pLD), 
which catalyze hydrolysis of plasma membrane structural phospholipids. phospholipid signaling is also involved in plant 
responses to phytohormones such as salicylic acid (sa). The relationships between phospholipid signaling, sa, and sec-
ondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether 
phospholipid signaling modulates sa-induced vanillin production through the activation of phenylalanine ammonia lyase 
(paL), a key enzyme in the biosynthetic pathway. salicylic acid was found to elicit paL activity and consequently vanillin 
production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase c (pI-pLc) signaling 
inhibitors neomycin and U73122. exposure to the phosphatidic acid inhibitor 1-butanol altered pLD activity and prevented 
sa-induced vanillin production. Our results suggest that pLc and pLD-generated secondary messengers may be modulat-
ing sa-induced vanillin production through the activation of key biosynthetic pathway enzymes.
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proteins, a plasma membrane receptor for SA has not been yet 
identified.

Salicylic acid has been applied in different plants to elicit 
the production of some secondary metabolites. In the genus 
Capsicum, SA has been used to induce secondary metabolites and 
increase capsaicinoid content in in vitro cultures.15-17 Capsaicinoid 
formation can originate from the phenylpropanoid pathway and 

via branched-chain amino acids such as valine or leucine.18 
Phenylalanine ammonia-lyase (PAL), a key enzyme in the 
phenylpropanoid pathway, forms cinnamic acid by the 
deamination of phenylalanine. PAL activity can be induced 
in response to various stress-inducing factors including 
freezing,19,20 wounding,21 UV light,22 and phytohormones 
such as SA. Increased PAL activity is associated with the 
accumulation of secondary metabolites (e.g., anthocyanins, 
flavonoids, and other phenolic compounds) in the tissues of 
plants such as pear,23 grape,24,25 tomato,26 apple,27 strawberry28 
and tangerine.29 This supports evidence suggesting that PAL is 
an environmental stress indicator in different plant tissues.19,30 
However, the relationship between phospholipid signaling, SA, 
and PAL has not yet been established.

Several inhibitory substances have been used to 
elucidate the role of phospholipid enzymes in cellular 
responses.31 In pharmacological studies using the inhibitors 

of phosphoinositide-PLC (PI-PLC) 
neomycin and U73122, it was shown to 
play a role in cellular response in plant 
models such as rice, soybean, peas cell 
suspensions.32-34

An evaluation of PLD involvement in 
different plant cellular processes has been 
conducted using a primary alcohol such 
as 1-butanol (1-But), which can inhibit 
PLD-mediated PA production through 
competing with water by generating the 
phosphatidyl-butanol group.35 This lipid 
is not normally present in cells but can be 
easily synthesized in vivo when cells are 
pre-incubated with low concentrations 
(0.1–0.5%) of 1-butanol.36 In this 
method, PLD-induced PA production is 
required to regulate increased production 
of secondary metabolites such as silymarin 
in Silybum marianum cell suspensions37 
or scopoletin in tobaccum suspensions.38 
These studies suggest that the products of 
the phospholipid signaling cascade may 
function as secondary messengers during 
the stimulation of secondary metabolism 
in plants.3,39

Our research group has observed 
that the treatment of C. chinense cell 
suspensions with 100 and 200 μM 
SA modulates the in vitro enzymatic 
activities of PLC and PLD, resulting in 
increased vanillin content.6 However, 

when vanillin content was evaluated in the presence of neomycin, 
the SA-induced vanillin production was inhibited. Therefore, we 
focused on elucidating the relationship between phospholipid 
signaling, PAL activity, and vanillin accumulation, which are 
all events closely related to the SA induction response. Our goal 
was to analyze biochemical evidence supporting PLC and PLD 
involvement in SA-induced signal transduction in the presence of 

Figure 1. salicylic acid increases paL activity and vanillin content in C. chi-
nense cells. after a 14-d culture cycle, cells were treated with 200 μM sa 
or untreated (control) and then paL activity (A) and vanillin production (B) 
assessed. results represent the mean of 3 independent experiments ± se, 
*P < 0.001. 

Figure  2. pLc-inhibitors suppress vanillin accumulation and paL activity in C. chinense suspension 
cells. cells were treated with 100 μM neomycin (N), 10 μM U73122 or 10 μM U73343 (inactive analog) 
for 15 min before sa addition and the paL activity (A and B) and vanillin content (C and D) were evalu-
ated. Data represent the mean of 3 independent experiments ± se, *P < 0.001. 
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neomycin, U73122, and 1-But and evaluate vanillin accumulation 
and PAL activity in C. chinense suspension cells.

Results

Effect of SA on PAL enzymatic activity and vanillin levels
SA-induced response and activity of PAL was studied in C. 

chinense suspension cells after culturing them for 14 d. Cells were 
harvested by transferring 1 g of the samples into flasks containing 
25 ml fresh Murashige and Skoog (MS) medium. After a 15 min 
adjustment period, one sample was exposed to 200 μM SA for 
30 min, and a control sample was left unexposed for the same 
period of time. Cells were then harvested by vacuum filtration and 
immediately frozen in liquid nitrogen.

PAL activity was found to be doubled in the 200 μM SA 
treatment compared with the control (Fig. 1A). Because increased 
PAL activity is associated with secondary metabolite accumulation, 
the present model was used to evaluate the effect of SA on vanillin 
accumulation. Addition of 200 μM SA to the cell suspensions 3 
times stimulated vanillin production (Fig. 1B), suggesting that 
SA-induced vanillin biosynthesis yield is correlated with increased 
PAL enzyme activity.

U73122 and neomycin reduce PAL activity and SA-stimulated 
vanillin levels

Initially, the effect of inhibitors of PI-PLC (neomycin and 
U73122) and PLD inhibitor (1-But) on cell suspensions was 
evaluated, followed by analysis of the cellular structure using 
scanning electron microscopy. The treatments with SA and 
inhibitors did not cause any morphological damage to the cell 
structure that might compromise metabolic activity (data not 
shown).

To determine the role of PLC in the regulation of vanillin 
accumulation in C. chinense cells, the cells were first treated with 
neomycin and U73122 and then treated with SA. Cell suspensions 
were placed in 25 ml fresh MS medium containing neomycin and/
or U73122 for 15 min, and a sample without inhibitor treatment 
was used as the control. Salicylic acid (200 μM) was then added 
to some of the cell/inhibitor mixtures for 30 min, while the others 
were not treated with SA. Our results showed that upon neomycin-
only treatment, PAL activity was similar to that of the control 
sample (Fig. 2A) but higher than the neomycin + SA treated sample, 
suggesting SA-induced stimulation. Treatment with U73122 
lowered PAL activity only by 26% compared with the control. The 
U73122 + SA treatment further decreased PAL activity, especially 
compared with the SA only treatment (Fig. 2B). Treatment of cells 
with U73343, the inactive analog of U73122, did not alter PAL 
activity. These results suggest that SA-induced increases in PAL 
activity can be regulated by PLC-mediated signaling.

The above results also imply that PLC signaling and metabolite 
(i.e., vanillin) accumulation are both related to the SA induction 
response. To further evaluate the effect of neomycin and U73122 
treatment on vanillin levels, cell suspensions were placed in 25 ml 
fresh MS medium containing neomycin or U73122 for 15 min 
before the addition of SA for 30 min (Fig. 2C and D). Neomycin-
only treatment produced vanillin levels similar to control levels 
(Fig. 2C), but neomycin-SA treatment reversed any SA-stimulated 

increases in vanillin accumulation. When treated with U73122 
only, vanillin levels remained at basal levels similar to those 
observed in the neomycin-only treated cells (Fig. 2D). Combined 
U73122-SA treatment produced lower levels of vanillin than in the 

Figure 3. reduction of vanillin accumulation and paL activity in C. chi-
nense cells in the presence of 1-butanol. Vanillin content was evaluated 
in cells treated with increasing concentrations of 1-butanol for 15 min 
(A). cells were incubated in 1-butanol (1-But, 0.5%), 200 μM sa, 1-But + 
sa, or 0.5% Tert-butanol (Tert). Vanillin content (B) and paL activity (C) 
were then evaluated. Data represent the mean of 3 independent experi-
ments ± se, *P < 0.001. 
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SA-only treatment. The inhibitory analog U73343 had no effect 
on vanillin levels (Fig. 2D).

PLD regulates PAL activity and accumulation of vanillin in 
C. chinense

To assess the role of PLD signaling in PAL regulation, 1-But 
was used as an inhibitor of PLD-induced PA formation. Because 
1-But may have a toxic effect on metabolite production, different 
working concentrations (% v/v) were evaluated to identify the 
concentration that did not affect basal vanillin levels in cell 
suspensions. After 15 min treatment with 1-But, cells were 
filtered, lyophilized, and vanillin levels quantified. At the 1% 
concentration, 1-But reduced vanillin levels by 53% compared 
with the control, but concentrations < 0.75% had no effect on 
vanillin levels (Fig. 3A). Specifically, 1-But at 0.5% did not affect 
basal vanillin levels compared with the control and therefore, this 
concentration was used to evaluate the effect of 1-But on PAL 
activity and SA-stimulated vanillin accumulation. After 14 d in 
culture, cell suspension samples were placed in 25 ml fresh MS 
medium containing 0.5% 1-But for 15 min before the addition 
of SA. Tert-butanol, an inactive 1-But isomer, was used as a 
positive control (Fig. 3B). In the 1-But treatment, vanillin levels 
were similar to that of the control (Fig. 3B). In contrast, 1-But-SA 
treatment decreased the vanillin content by 84%, effectively 
reversing SA-stimulated vanillin accumulation. Tert-butanol had 
no effect on basal levels of vanillin content in the cell suspension.

In the 1-But-only treatment, PAL activity was similar to control 
(Fig. 3C). However, PAL activity was 58% lower in the 1-But + 
SA treatment than in the SA-only treatment. Tert-butanol did not 
modify PAL activity. These results suggest that SA-stimulated 
increases in PAL activity are mediated by PLD signaling.

Total endogenous SA production
Total endogenous SA level in the cells was quantified in the 

presence of neomycin, U73122 or 1-But to determine whether these 
inhibitors modify intracellular SA levels. Exogenous SA application 
produced a 3-fold increase in total endogenous SA content 

compared with the basal 
content in cells (Fig. 4A). 
However, upon U73122 
+ SA and neomycin 
+ SA treatments SA 
levels decreased by 43% 
and 53%, respectively 
(Fig. 4A), and by 43% 
after 1-But treatment 
(Fig. 4B). Cells treated 
only with the inhibitors 
did not affect basal levels 
of total SA.

Discussion

Elicitors increase 
secondary metabolite 
accumulation in cultured 
cells, thereby facilitating 
the study of metabolite 

biosynthesis regulation mechanisms.40 Phytohormones such as SA 
increase the accumulation of metabolites such as capsaicinoids in 
cell suspensions of C. annum C. frutescens, and C. chinense.6,15-17 
This study evaluated the role of the phospholipase signaling 
pathway in SA-stimulated vanillin production in C. chinense cell 
suspensions. Pharmacological substances that inhibit PLC and 
PLD signaling were used and their effect on PAL activity and 
vanillin content quantified.

PAL is the first enzyme in the activated phenylpropanoid 
biosynthesis pathway and is responsive to elicitor stimulation. 
Enzymatic activity was initially evaluated on day 14 of C. chinense 
cell suspension culture, and SA application was found to increase 
it. The use of neomycin and U73122 show that PLC signaling 
could be involved in the SA-stimulated vanillin production. 
This may occur as a result of the regulation of phenylpropanoid 
pathway (Fig. 2A and B). Induction of PAL may occur via a PLC-
modulated signal, since neomycin is a phosphoinositide turnover 
and PtdIns(4,5)P

2
 inhibitor.41

Kamada and Muto42 evaluated the effect of the protein 
kinase inhibitors K252 and staurosporine on PAL activity and 
phosphoinositide turnover in N. tobacum cell suspensions after 
stimulation with an elicitor prepared from Phytophthora nicotianae. 
The inducing agent was found to stimulate phosphoinositide 
turnover and increase PAL activity, while the addition of K252 
and staurosporine inhibited both these responses. The results 
suggested that phosphoinositide turnover plays an important role 
in stimulating PAL activity via kinases. Neomycin has been shown 
to a have a similar inhibitory effect on PAL elicitation when used 
in combination with an elicitor prepared from the cell wall of the 
pathogenic fungus Fusarium oxysporum that infiltrated Pisum 
sativum leaves43 or Larix decidua cell suspensions.44 Neomycin 
treatment reduced PAL activity when used in combination with 
the elicitor.

Effects of neomycin and U73122 on vanillin accumulation 
suggest that blocking one of the processes coupled to Ins(1,4,5)P

3
 

Figure 4. effect of phospholipase inhibitors on total endogenous sa levels in C. chinense suspension cells. cells were 
treated with the pLc inhibitors 100 μM neomycin (N), 10 μM U73122, or 10 μM U73343 with 200 μM sa (A), or the 
pLD inhibitor 0.5% 1-butanol or 0.5% Tert-butanol (Tert) with 200 μM sa (B). In all treatment groups, cells were pre-
incubated with the inhibitors for 15 min before the 30 min sa treatment. The sa level in the cells after the different 
treatments was evaluated by hpLc (see Materials and Methods). The data represent the mean of 3 independent exper-
iments ± se, *P < 0.001 
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or IP
6,
 such is the cytosolic Ca2+ increment, 

could be affecting important signaling 
components responsible for PAL activation. 
This would affect vanillin levels in the C. 
chinense cell suspensions. This process was 
no identified in the present study, but there 
are reports of PAL activity regulation via 
phosphorylation,45,46 although it is not clear 
if these effects occur either directly on PAL 
or on some regulatory element mediating 
the response to a stimulus.

For experimental purposes, PLD activity 
can be manipulated by the addition of 
1-But. This strategy was previously used to 
show that PLD-induced PA production is 
necessary for increased production of the 
metabolite silymarin in Silybum marianum 
cell suspensions.37

In this way, the effect of inhibited PA 
derivative production on PLD-stimulated 
vanillin accumulation in C. chinense cell 
suspensions treated with SA was analyzed 
by adding 1-But. Both SA-stimulated 
PAL activity (Fig. 3B) and vanillin 
accumulation (Fig. 3C) were reduced by 
addition of 1-But. The same effect has been 
reported in N. tobacum cell suspensions 
treated with 1-But,38 where it was shown 
to reduce riboflavin-stimulated scopoletin 
accumulation (activating defense response), 
whereas exogenous application of PA 
reversed the effect. This indicates that 
PLD and the PA products are important 
components in riboflavin-activated 
phytoalexin biosynthesis regulation. When 
1-But was applied to mechanically injured 
plants, both PAL activity and phenolic compounds were reduced.47

That the inhibition of PLD in SA-exposed C. chinense cells had 
abolished PAL and vanillin suggests that this signaling pathway 
participate in this response. PA is a vital molecule that has been 
characterized as a multifunctional phospholipid with direct and 
indirect impacts on many cellular processes.48,49 For example, in 
a study of how PA may activate MAPK-type protein kinases in 
soybean (Glycine max L.) under stress, inhibition of PA production 
by 1-But resulted in wounding, and MAPK activation was also 
affected.50 No reports exist in the literature on the direct role of PA 
in PAL activity, although some studies have suggested that Ca2+, 
calmodulin (CaM) and ion channels are important components 
in the signal transduction pathway that stimulates PAL activity 
and that PA may be acting as a modulator of these signaling 
components.51

Capsicum chinense cells are sensitive to exogenous SA treatment 
and exhibit a significant increase in total SA in response to 
exogenous SA. These results are consistent with those from a 
study of SA stimulation in Hypericum perforatum L. shoots, callus, 

and cell suspensions in which growth of callus or shoots in cell 
suspensions was facilitated by close contact between the cells and 
the elicitor.52 In another study, treatment with SA was reported 
to induce de novo synthesis via activation of gene expression of 
protein involved in the SA biosynthesis pathway.8,53

Neomycin is widely used due to its affinity to form 
electroneutral complexes with PIP and PtdIns(4,5)P

2
, thereby 

blocking the binding of PIP and PtdIns(4,5)P
2
 with PLC.54 

This antibiotic has also been reported as an inhibitor of 
protein synthesis in bacteria and chloroplasts.55 Chloroplast/
plastids are important for lipid metabolism and the generation 
of lipid derived signal9 and because neomycin effects in these 
organelles, we cannot rule out the possibility that it could have 
affected protein synthesis, affecting the chloroplast-localized 
SA pathway. However, we found that 100 μM neomycin did 
not affect the endogenous total SA. This result added to the 
effect of U73122 on total SA level support our hypothesis 
that neomycin is affecting the PLC signaling and not protein 
synthesis in chloroplast.

Figure 5. The conceptual model for salicylic acid role on vanillin synthesis involving phospholipid 
signaling pathway. (i) salicylic acid can be sensed on or near the plasma membrane by a receptor 
and activate a signaling cascade through phospholipases (pLc and/or pLD) function. This is fol-
lowed by the regulation of paL enzymatic activity and increased vanillin content. (ii) In the pres-
ence of U73122 or neomycin (inhibitors of pLc signaling) the levels of DaG and Ins(1,4,5)P3 (second 
messengers), reduced which lead to modifications of intracellular ca2+ levels that may affect the 
activity of paL as well as the promoter of reduced vanillin production. (iii) The inhibitory function 
of 1-butanol on formation of pa could be affecting phosphorylation processes through the regu-
lation of protein kinases activities that may be responding to pa levels. This event also could be 
affecting paL activity following vanillin production. Therefore, response to sa resulting in the pro-
duction of second messengers such as DaG, Ins(1,4,5)P3, and pa produced in phospholipid signal-
ing pathway may be involved in regulating of paL activity, and consequently vanillin production.
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The results presented here suggest that PLC and PLD 
signaling inhibitors may be interfering at some level with SA 
biosynthesis, and consequently, with vanillin production.

Our results are integrated into a model (Fig. 5) that suggests 
that SA regulates PAL activity, and consequently, increasing 
vanillin content in the cell suspensions. However, treatment of 
cells with PI-PLC and PLD inhibitors prior to SA addition leads 
to a simultaneous decrease in PAL activity and vanillin.

Therefore, PAL may be an important enzyme in vanillin 
biosynthesis, which in turn suggests that signal molecules such 
as phosphoinositides (PI, PIP, and PtdIns(4,5)P

2
) and PA are 

involved in regulating PAL activity. Overall, PLC and PLD 
inhibitors were found to reduce PAL activity and metabolite 
(vanillin) accumulation, suggesting that the PLC and PLD 
signaling pathways are involved in this SA-induced process.

Materials and Methods

Materials
Neomycin sulfate, U73122, U73343, 1-But, tert-butanol, and 

sodium salicylate were purchased from Sigma-Aldrich. U73122 
and U73343 were dissolved in dimethyl sulfoxide to make stock 
solutions. Bicinchoninic acid (BCA) protein assay reagent (Pierce 
Chemical Co). All other chemicals were supplied by Sigma-Aldrich.

Cell culture and SA treatment
Capsicum chinense suspension cells were obtained by callus 

desegregation followed by culture in MS medium at pH 5.6.56 The 
MS medium was supplemented with 0.5 mM myo-inositol, 0.02 
mM thiamine, 0.2 mM cysteine, 4 μM 2,4-dyclorophenoxiacetic 
acid, and 3% sucrose. Cells were subcultured every 14 d. For the 
induction treatments, 1 g (fresh weight) cell suspension per flask 
was inoculated into 25 ml culture medium and maintained as 
described above for 14 d prior to SA exposure. After the culture 
period, 200 μM SA was added to the cell suspension, and water 
was added in the control sample. Both samples were kept at 25 
°C on a rotary shaker at 100 rpm for 30 min. The cells were then 
harvested, frozen in liquid nitrogen, and stored at –80 °C until 
protein extraction.

Phospholipase inhibitor treatment
Before being added to cell suspensions, the inhibitors neomycin 

(100 μM), U73122 (10 μM), and 1-But (0.5%) were sterilized by 
filtration. Each inhibitor was added to a cell suspension at the end 
of the 14-d culture period and 15 min before SA addition.

Protein extract preparation
For protein extraction, 1 g of cells was homogenized in a 

mortar and pestle in 2 ml extraction buffer (50 mM Tris-HCl, pH 
8.8, 15 mM β-mercaptoethanol) at 4 °C. The resulting mixture 
was centrifuged at 1747 × g for 30 min and the supernatant used 
as the PAL enzyme source in the activity assay. Sample protein 
concentration was measured by the BCA assay57 using bovine 
serum albumin (BSA) as a standard.

PAL activity
Enzymatic activity assay was performed in 2 ml reaction 

volume containing 0.5 ml enzyme extract (5–20 μg protein), 1 ml 
50 mM Tris-HCl (pH 8.8), and 0.5 ml 10 mM l-phenylalanine. 
After incubating this mixture at 37 °C for 1 h, 500 μl 6 M HCl 
was added to stop the reaction and then centrifuged at 10000 × g 
for 10 min. The supernatant was removed to quantify PAL activity 
in a spectrophotometer at 290 nm. The boiled extract was white 
in appearance and contained other reaction mixture components. 
A calibration curve was generated using cinnamic acid, and one 
unit of enzyme activity was designated as being equivalent to the 
amount required to produce 1 pmol cinnamic acid / min.16

Vanillin determination
Vanillin was acetone extracted from freeze-dried cultures 

and quantified by in situ TLC densitometry using a Shimadzu 
CS-930 dual wavelength chromatoscanner equipped with a DR 2 
data collector (Shimadzu Corporation, Kyoto, Japan).58

Total SA Measurement
Endogenous total SA levels were measured in total extract 

by adding 800 μl buffer (50 mM NaCl, 1 mM EGTA, 250 
mM sucrose, 10% glycerol, 50 mM Tris-HCl pH 7.4, 10 mM 
sodium pyrophosphate, 0.2 mM sodium orthovanadate), 
1.24 mM phenylmethylsulfonyl fluoride (PMSF), and 1 mM 
β-mercaptoethanol per gram of plant tissue, homogenizing the 
mixture and centrifuging it at 1747 × g for 30 min at 4 °C. Organic 
phase extraction was performed by adding 1 ml 1M HCl to 0.5 ml 
protein extract, mixing for 20 s, adding 2 ml dichloromethane/
isopropanol (9:1 v/v), stirring for 5 min and centrifuging at 
3,351.04 × g for 5 min. The organic phase (bottom layer) was 
evaporated in a CentriVap (DyNA Vap) at 400 mbar for 1 h. 
The concentrate was resuspended in 50 μl mobile phase [pH 3.6 
acetate buffer / methanol (72:28 v/v)]. SA separation was done 
by high performance liquid chromatography (HPLC) (Agilent 
1100) using a 4.6 × 150 mm ion exchange column (Eclipse XDB-
C18). SA was eluted with the mobile phase at a rate of 1 ml/min 
at room temperature and quantified SA by UV spectrometry at 
280 nm.

Data presentation
All experiments were repeated at least 3 times using extracts 

prepared on separate occasions, and all produced similar results. 
Data were analyzed using a Student t-test. Analyses were run 
using the Sigma Stat ver. 3.1 program (2004).
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